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M A T H E M A T I C A L  M O D E L I N G  O F  N A T U R A L - G A S  

P R O D U C T I O N  S Y S T E M S  

I~. A. Bondarev and T. V. Sobolevskaya UDC 533.551:532.546 

It is proposed that a gas-bearing bed and a well be considered a single system. It is demonstrated that the 

equation of  state of  an imperfect gas can be linearly approximated. 

In the description of the extraction of natural gas from trap beds through wells, the pipe gas flow and 

f i l tration of gas in a porous medium are usually considered separately, but their interrelationship is absolutely 

obvious. The only exception is monograph I I 1, where an algorithm is developed for determination of parameters 

in a model of gas production in terms of measured pressures and temperatures in the well mouth. In t l  I a rather 

general mathematical model is used that takes into account the temperature nonuniformity of the gas flow in porous 

material and in the well and the imperfection of lhe gas. A similar problem was considered in [2 ] for an isothermal 

flow of a perfect gas. 

At present, the use of a perfect-gas model in calculations of perfect-gas production is recognized as 

inadequate because of substantial increases in the depths of occurrence of gas-bearing beds, although the simplicity 

of obtained solutions continues to attract engineers and reserachers. Therefore, it seems useful to develop 

approaches that can simplify the complicated numerical algorithms for the corresponding boundary-value problems 

without deterioration of the accuracy of the results. 

In the present article the initial problem [I ] is simplified using the physics of the process and the possibility 

of describing the behavior of natural gas by simple functional relations, which was not noted earlier. 

The first simplification of the system of equations used in [I ] is that of assuming that gas filtration in the 

bed is isothermal. This assumption is physically reasonable, because of the high volume heat capacity of rocks in 

comparison with that of the filtering gas and is realized over a wide range of bed parameters, except for gas 

extraction from beds with very low permeability, where high pressure gradients decrease the temperature 

substantially in the bottom zone. For example, in monograph [1 ] it is shown that for a permeability of about 

0.1.10 -12 m 2 neglect of the temperature nonuniformily in the gas-bearing bed results in an error of at least 13/0 

in the determined mass flow rate. In this case, the relative decrease in the temperature is 0.05 in the bed and 0.95 

in the well. 

Consequently, the system of equations describing gas extraction takes the form [1 ]: 

dH z(H) 0 < x < 1 ; (1) 
d x - x l ~  h ' 

d/7 n ~ (n,  e )  e 
dy - BI /G (2) z (/7, O) o ~ H 

d--O-O = B I (O  r - O )  - B 4 + ~ ( O ,  /7) d r l  
dy dy ' 

0 < y < 1. (3) 
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Fig. 1. Gas  impe r f ec t i on  coeff ic ient  

tempera ture .  

The boundary  condi t ions:  

17[ ~=l 

versus dimensionless pressure and 

= f l  r (4) 

nlx=o = nly=O, 

The  d imens ionless  numbers  and variables:  

0 y=O = Or" (5) 

17 = P / P c r '  ~) = T / T c r ,  x = In ( r / r w ) / X  1 , y =  y / L ,  

2 5 2 
x I = In ( R b / r w ) ,  B 1 = g L / R C p ,  B 2 = 8 U / M 2 R T c r L / ~  D Per, 

B 3 = J r D ~ L / c t r M  , B 4 = R B  I / c  o , f l  = / z M R T r / 2 . ~ k h p ~  r . 

In problem (1)-(5)  the first equation descr ibes  isothermal  ax i symmetr ic  gas f i l t rat ion toward the well,  and  

Eqs. (2) and  (3) descr ibe  noniso thermal  gas flow in a vertical tube with al lowance for heat  t ransfe r  with the 

su r rounding  rocks (the first term in Eq. (3)) and  gas cooling due to constr ict ion of the flow (the first term in Eq. 

(3)).  At the b o u n d a r y  of the bed the pressure  is a ssumed  to be known (Eq. (4)) ,  and  at the well bot tom, the 

conjugat ion condi t ion and the t empera tu re  uniformity condit ion in the bed are given (the first and second condi t ions 

of (5), respect ively) .  

Solution of the sys tem of Eqs. (1)-(5)  is begun with integrat ion of Eq. (I)  with boundary  condi t ion (4). As 

a result ,  the quadra tu re  is ob ta ined  

I1~ 1-[dFl (6) 
. ~  (1 - x) = f T F F ~  

H 

In principle,  from (6) it is possible to de te rmine  the pressure at the well bottom assuming x = 0. However,  it is 

impossible  to use this result  d i rect ly  as a boundary  condit ion for solution of the sys tem of Eqs. (2) and  (3). 

For  subsequent  calculat ions,  it is necessary to consider  the behavior  of the function z(/7) at f ixed O = Or 

(Fig. 1). First ,  it should-be noted that in the practically important  t empera ture  range the function is nonmonotonic ,  

which subs tan t ia l ly  h inders  use of the most popular  formulas for supercompress ib i l i ty  z in a wide pressure  range.  

For  example ,  the Berthollet  equation 

z = 1 + 0 . 0 7 H / O  r (1 - 6 / I 7 ~ )  (7) 

can be used only in the range  of the d imensionless  pressure in which O z / O H  < O, i.e., on the l e f t -hand  (descending)  

branch of the curve z ( H )  (see Fig. 1). It is impor tant  to note that  at constant  t empera tures  formula (7) is a l inear  

relat ion of the form z = 1 + b H ,  where the coefficient b < 0, if Or < "r 
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TABLE 1. Dimensionless  Pressures at Well Bottom and Mouth 
i 

Case /7~t  ]-]m 

Formula (10) Numerical solution L = 2000 L = 3000 

1 7.646 7.648 6.420 5.804 

2 5.986 6.036 5.201 4.767 

From the general form of the curves z(/7) it can be assumed that they are also l inear approximation for 

the ascending branches.  It should be noted that the pressure should not exceed values at which the sign at the 

derivative Oz/00 changes. It follows from Fig. 1 that for @r = 1.8 this limit is about 370.105 N / m 2. We use formulas 

of the form 

z = :0(1 + h/7),  (8) 

where the coefficients b and z 0 depend on the dimensionless temperature O r of the gas-bearing bed. 

Substi tution of (8) into Eq. {1) with condition (4) gives 

1 I + hF/~ (9)  
a ( l  - x ) = / 7  r - 1 7 - ~ l n  1 +b~----ff' 

where a = .q bz~3. 
The d imens ion less  pressure at the bottom /Tbo I is easily de te rmined  by formula (9). The resul tant  

t ranscendental  equation is solved very easily graphically. For t h i s ,  it is expressed in the form 

u - In u = 1 + b/7 r - In (1 + b/Tr) - ab, (I0) 

where u = I + bHw. 
At H ~ t  > 0 the lef t-hand side of (10) rises monotonically from I to infinity. A solution of equation (10) is 

found at the intersection point of the curve (u - In u) with the straight line parallel to the abscissa s tar t ing from 

a point on the ordinate axis equal to the r ight-hand side of (10). 

The pressure at the bottom calculated in this way is used to determine the temperature and pressure at 

the well mouth; thus, initial problem (1)-(5) is reduced to integration of Eqs. (2) and (3) with boundary  conditions 

(5), in which the mouth pressure is determined by formula (10). 

The obtained results will be illustrated by calculation of gas extraction through a vertical well located in 

the center of a circular bed. Initial data: R b = 5200, h = 10, Pr = 361.5" 105 , Tr = 343 K, L = 2000 and 3000, D = 

2rcr = 0.125, T i n  = 270 K, ~/, = 0.015, a = 5. The gas is methane with the following characteristics: Per = 4 5 . 8  10:, 

T b -- 190.5 K, :~ = 0.198.10 -4 , Cp = 2093.4, R = 530. Two cases are compared: 1) k = 0 .12.10 -~2, M = 9.6; 2) k = 

0.12" 10 -14, M = 0.6785. All the parameters are given in the St system. 

First, O = Tr/Tcr = 1.8 is determined.  From this isotherm in the cu~'e z = z(/-/) (Fig. 1), the coefficients 

in formula (8) are determined:  z = 0.769 and b = 0.043. Substi tution of these values into formula (10) gives Hoot, 

and then Eqs. (2) and (3) are integrated by the R u n g e - K u t t a  method. Results of the calculation are given in Table 

1. A numerical  solution is obtained by integration of Eq. (1), in which the La tonov-Gurev ich  formula 13 ] is used 

to determine the coefficient z. At Or = 1.8, it has the form 

z = 0.83 r + 0 .1p.  (11) 

It can be seen from Table 1 that l inear approximation (8) underest imates the results in comparison with 

the "exact" solution, but the error does not exceed 1 ~ .  

In conclusion, it should be noted that a similar approach can be used in integration of the equation of 

nonisothermal  pipe flow. For example, at e = O o and Bi = 0 (a horizontal pipeline) the formula 
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1 1 + b/'/bo t ( 12 )  
b 2 b z o x  = H b o  t - H - -~ In 1 + b H  

can be obtained from Eq. (2). 

The  relation corresponding to B I ~e 0 is not given here as it is too cumbersome. 

Solution of one more practically important problem on determination of the bottom pressure in a stopped 

well in terms of measured pressures on the surface can also be obtained as a quadrature.  For th i s ,  B 2 = 0 is assumed 

in Eq. (2) and formula (8) is used. Integration results in 

/7 B I 
In + b ( n  - / 7 0 )  = Y. (13) 

In the above formula the coordinates origin is on the surface, where the pressure /7 = f l  o is known. In the case of 

a perfect gas (b = 0), Eq. (13) becomes the known barometric formula. 

N O T A T I O N  

p, pressure; T, temperature; r, radial coordinate with the reference point on axis of well; ~., coordinate 

along axis of well; L, well depth; Rb, coordinate of boundary of bed; g, gravity acceleration; R, gas constant;  cp, 

#,  specific heat at constant pressure and gas viscosity; tp, hydraulic resistance coefficient; M, mass flow rate of gas; 

a ,  gas-rock heat transfer coefficient; k, h, permeability and thickness of gas-bearing bed. Subscripts: cr, critical 

parameters;  r, rock; w, well; in, initial; b, boundary.  
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